Lesson Plan Name of the Faculty : Sh. Rajender Kumar Tayal Discipline : Mechanical Engineering Semester : 3rd Subject : Strength of Material (SOM) Lesson Plan duration : 17 weeks (01.10.2021 to 28.01.2022) Work load per week : Lecture -03, Practical -02 | Week | Theory | | | |-----------------|------------------|--|--| | | Lecture | Topic | | | | Day | (Including assessment/test) | | | 1 st | 1 st | Subject introduction and overview | | | | 2 nd | Unit 1: Stresses and Strains Basic concept of load, stress and strain | | | | 3 rd | Tensile, compressive and shear stresses Linear strain, Lateral strain, Shear strain, Volumetric strain, Concept of Elasticity, Elastic limit and limit of proportionality | | | 2 nd | 4 th | Hook's Law and Elastic Constants, | | | | 5 th | Stress-strain curve for ductile and brittle materials, Nominal stress | | | | 6 th | Yield point, plastic stage, Ultimate stress and breaking stress, Percentage elongation | | | 3 rd | 7 th | Proof stress and working stress, Factor of safety, Poisson's Ratio | | | | 8 th | Thermal stress and strain, Longitudinal and circumferential stresses in seamless thin walled cylindrical shells | | | | 9 th | Introduction to Principal stresses | | | 4 th | 10 th | Unit 2: Resilience Strain Energy, Resilience, proof resilience and modulus of resilience | | | | 11 th | Strain energy due to direct stresses and Shear Stress | | | | 12 th | Stresses due to gradual, sudden and falling load | | | 5 th | 13 th | Unit 3: Moment of Inertia Concept of moment of inertia and second moment of area | | | | 14 th | Radius of gyration, Theorem of perpendicular axis and parallel axis (with derivation) | | | | 15 th | Second moment of area of common geometrical sections : Rectangle, Triangle, Circle (without derivation) | |------------------|------------------|---| | 41- | 41- | | | 6 th | 16 th | Unit 4: Bending Moment and Shearing Force Concept of various types of beams and form of loading, Concept of end supports-Roller, hinged and fixed | | | 17 th | Concept of bending moment and shearing force, B.M. and S.F. Diagram for cantilever | | | 18 th | Second moment of area for L,T and I section, Section modulus | | 7 th | 19 th | 1 st sessional test (Tentative) | | | 20 th | Assessment | | | 21 st | B.M. and S.F. Diagram for cantilever and simply supported beams with and without overhang subjected to concentrated and U.D.L | | 8 th | 22 nd | Unit 5: Bending Stresses | | | | Concept of Bending stresses | | | 23 rd | Theory of simple bending, Derivation of Bending Equation, Use of the equation | | | 24 th | Concept of moment of resistance | | 9 th | 25 th | Bending stress diagram | | | 26 th | Section Modulus for rectangular, circular and symmetrical I section | | | 27 th | Calculation of maximum bending stress in beams of rectangular, circular, and T section | | 10 th | 28 th | Unit 6: Columns | | 10 | 40 | Concept of column, modes of failure, Types of columns, modes of failure of columns | | | 29 th | Buckling load, crushing load, Slenderness ratio, | | | 30 th | Effective length, End restraints, Factors effecting strength of a column, | | 11 th | 31 st | 2 nd sessional test (Tentative) | | | 32 nd | Assessment | | | 33 rd | Strength of column by Euler Formula without derivation, RankineGourdan formula (without derivation) | | 12 th | 34 th | Unit 7:Torsion Concept of torsion, difference between torque and torsion | | | 35 th | Derivation of Torsion Equation, use of torsion equation for circular shaft, | | | | (solid and hollow) | |------------------|------------------|--| | | 36 th | Numerical Problems | | 13 th | 37 th | Comparison between solid and hollow shaft with regard to their strength and weight, Power transmitted by shaft | | | 38 th | Concept of mean and maximum torque | | | 39 th | Unit 8: Spring Introduction of spring | | 14 th | 40 th | Closed coil helical springs subjected to axial load and calculation of: - Stress deformation | | | 41 st | Closed coil helical springs subjected to axial load and calculation of: - Stress deformation | | | 42 nd | Stiffness and angle of twist and strain energyStrain energy and proof resilience. | | 15 th | 43 rd | Determination of number of plates of laminated spring (semi elliptical type only) | | | 44 th | 3 rd sessional test (Tentative) | | | 45 th | Assessment | | 16 th | 46 th | Revision | | | 47 th | Revision | | | 48 th | Revision | | 17 th | 49 th | Revision | | | 50 th | Revision | | | 51 st | Revision |