Lesson Plan

Name of the Faculty : Sh. Munish Kumar Jain

Discipline : Mechanical Engineering

Semester : 3rd

Subject : Thermodynamics-I

Lesson Plan duration: 17 weeks (01.10.2021 to 28.01.2022)

Work load per week : Lecture -03, Practical -02

Week	Theory			
	Lecture	Topic		
	Day	(Including assessment/test)		
1 st	1 st	Subject introduction and overview		
	2 nd	Unit 1: Fundamental Concepts:		
		Thermodynamic state and system, boundary, surrounding, universe,		
	3 rd	thermodynamic systems – closed, open, isolated, adiabatic, homogeneous and heterogeneous, macroscopic and microscopic, properties of system – intensive and extensive, thermodynamic equilibrium,		
2 nd	4 th	Quasi – static process, reversible and irreversible processes, Zeroth law of		
_		thermodynamics, definition of properties like pressure, volume, temperature,		
		enthalpy and internal energy.		
	5 th	Unit 2: Laws of Perfect Gases:		
		Definition of gases, explanation of perfect gas laws – Boyle's law,		
	6 th	Charle's law, Avagadro's law, Regnault's law,		
3 rd	7 th	Universal gas constant, Characteristic gas constants and its derivation.		
	8 th	Specific heat at constant pressure, specific heat at constant volume of a gas,		
	9 th	derivation of an expression for specific heats with characteristics,		
4 th	10 th	simple numerical problems on gas eqn.		
	11 th	Unit 3: Thermodynamic Processes:		
		Types of thermodynamic processes – Isochoric process, equation representing the process. Derivation of work done, change in internal energy, change in entropy, rate of heat transfer for the above process.		
	12 th	Isobaric process, equation representing the process. Derivation of work done, change in internal energy, change in entropy, rate of heat transfer for the above process.		
5 th	13 th	Isothermal process, equation representing the process. Derivation of work done, change in internal energy, change in entropy, rate of heat transfer for the above process.		
	14 th	Adiabatic, isentropic processes, equations representing the processes. Derivation of work done, change in internal energy, change in entropy, rate of heat transfer for the above processes.		
	15 th	Polytropic and throttling processes, equations representing the processes. Derivation of work done, change in internal energy, change in entropy, rate of heat transfer for the above processes.		

6 th	16 th	Unit 4: Laws of Thermodynamics
	10	Laws of conservation of energy, first law of thermodynamics (Joule's
		experiment) and its limitations,
	17 th	Application of first law of thermodynamics to Non-flow systems – Constant
	17	volume, Constant pressure, Adiabatic and polytropic processes,
	18 th	Steady flow energy equation, Application of steady flow energy equation for
	10	turbines, pump, boilers, compressors, nozzles, and evaporators.
7 th	19 th	1 st sessional test (Tentative)
,	17	1 Sessional test (Tentative)
	20 th	Assessment
	21 st	Heat source and sink, statements of second laws of thermodynamics: Kelvin
	21	Planck's statement, Classius statement,
8 th	22 nd	Equivalency of statements, Perpetual motion Machine of first kind, second kind,
O	22	Carnot engine,
	23 rd	Introduction of third law of thermodynamics, concept of irreversibility and
	23	concept of entropy.
	24 th	Unit 5: Ideal and Real Gases
	24	Concept of ideal gas, enthalpy and specific heat capacities of an ideal gas,
9 th	25 th	P – V – T surface of an ideal gas, triple point, real gases, Vander-Wall's
9	23	$\mathbf{r} - \mathbf{v} - \mathbf{i}$ surface of an ideal gas, triple point, leaf gases, valider-wants equation.
	26 th	Unit 6: Properties of Steam:
	20	Formation of steam and related terms, thermodynamic properties of steam,
	27 th	Steam tables, sensible heat, latent heat, internal energy of steam,
4 oth		
10 th	28 th	entropy of water, entropy of steam, T- S diagrams,
	29 th	Mollier diagram (H - S Chart), Expansion of steam, Hyperbolic, reversible
		adiabatic and throttling processes,
	30 th	Determination of quality of steam (dryness fraction),
11 th	31 st	2 nd sessional test (Tentative)
11	31	2 Sessional test (Tentative)
	32 nd	Assessment
	33 rd	Unit 7: Steam Generators:
	33	Uses of steam, classification of boilers, Function of various boiler mounting and
		accessories,
12 th	34 th	Comparison of fire tube and water tube boilers. Construction and working of
14	J -1	Lancashire boiler,
	35 th	Nestler boiler, Babcock & Wilcox Boiler.
	33	Introduction to modern boilers
	36 th	Unit 8: Air Standard Cycles
	30	Meaning of air standard cycle – its use, condition of reversibility of a cycle
		Description of Carnot cycle,
13 th	37 th	Otto cycle, Diesel cycle, simple problems on efficiency for different cycles.
13	38 th	Comparison of Otto, Diesel cycles for same compression ratio, same peak
	30	pressure developed and same heat input.
		Reasons for highest efficiency of Carnot cycle and all other cycles working
		between same temperature limits
	39 th	Unit 9:Air Compressors
	39	Functions of air compressor – uses of compressed air, type of air compressors
14 th	40 th	Single stage reciprocating air compressor, its construction and working,
14	40	representation of processes involved on P – V diagram, calculation of work
	<u> </u>	representation of processes involved on r - v diagram, calculation of work

		done.
	41 st	Multistage compressors – advantages over single stage compressors, use of air
	1	cooler,
	42 nd	condition of minimum work in two stage compressor (without proof), simple
		problems
		Rotary compressors – types, working and construction of centrifugal
₄ ≂th	, ard	compressor,
15 th	43 rd	axial flow compressor, vane type compressor
	44 th	3 rd sessional test (Tentative)
	45 th	Assessment
16 th	46 th	Revision
	47 th	Revision
	48 th	Revision
17 th	49 th	Revision
	50 th	Revision
-	51 st	Revision