Lesson Plan Name of the Faculty : Sh. Munish Kumar Jain Discipline : Mechanical Engineering Semester : 3rd Subject : Thermodynamics-I Lesson Plan duration: 17 weeks (01.10.2021 to 28.01.2022) Work load per week : Lecture -03, Practical -02 | Week | Theory | | | | |-----------------|------------------|--|--|--| | | Lecture | Topic | | | | | Day | (Including assessment/test) | | | | 1 st | 1 st | Subject introduction and overview | | | | | 2 nd | Unit 1: Fundamental Concepts: | | | | | | Thermodynamic state and system, boundary, surrounding, universe, | | | | | 3 rd | thermodynamic systems – closed, open, isolated, adiabatic, homogeneous and heterogeneous, macroscopic and microscopic, properties of system – intensive and extensive, thermodynamic equilibrium, | | | | 2 nd | 4 th | Quasi – static process, reversible and irreversible processes, Zeroth law of | | | | _ | | thermodynamics, definition of properties like pressure, volume, temperature, | | | | | | enthalpy and internal energy. | | | | | 5 th | Unit 2: Laws of Perfect Gases: | | | | | | Definition of gases, explanation of perfect gas laws – Boyle's law, | | | | | 6 th | Charle's law, Avagadro's law, Regnault's law, | | | | 3 rd | 7 th | Universal gas constant, Characteristic gas constants and its derivation. | | | | | 8 th | Specific heat at constant pressure, specific heat at constant volume of a gas, | | | | | 9 th | derivation of an expression for specific heats with characteristics, | | | | 4 th | 10 th | simple numerical problems on gas eqn. | | | | | 11 th | Unit 3: Thermodynamic Processes: | | | | | | Types of thermodynamic processes – Isochoric process, equation representing the process. Derivation of work done, change in internal energy, change in entropy, rate of heat transfer for the above process. | | | | | 12 th | Isobaric process, equation representing the process. Derivation of work done, change in internal energy, change in entropy, rate of heat transfer for the above process. | | | | 5 th | 13 th | Isothermal process, equation representing the process. Derivation of work done, change in internal energy, change in entropy, rate of heat transfer for the above process. | | | | | 14 th | Adiabatic, isentropic processes, equations representing the processes. Derivation of work done, change in internal energy, change in entropy, rate of heat transfer for the above processes. | | | | | 15 th | Polytropic and throttling processes, equations representing the processes. Derivation of work done, change in internal energy, change in entropy, rate of heat transfer for the above processes. | | | | 6 th | 16 th | Unit 4: Laws of Thermodynamics | |------------------|------------------|---| | | 10 | Laws of conservation of energy, first law of thermodynamics (Joule's | | | | experiment) and its limitations, | | | 17 th | Application of first law of thermodynamics to Non-flow systems – Constant | | | 17 | volume, Constant pressure, Adiabatic and polytropic processes, | | | 18 th | Steady flow energy equation, Application of steady flow energy equation for | | | 10 | turbines, pump, boilers, compressors, nozzles, and evaporators. | | 7 th | 19 th | 1 st sessional test (Tentative) | | , | 17 | 1 Sessional test (Tentative) | | | 20 th | Assessment | | | 21 st | Heat source and sink, statements of second laws of thermodynamics: Kelvin | | | 21 | Planck's statement, Classius statement, | | 8 th | 22 nd | Equivalency of statements, Perpetual motion Machine of first kind, second kind, | | O | 22 | Carnot engine, | | | 23 rd | Introduction of third law of thermodynamics, concept of irreversibility and | | | 23 | concept of entropy. | | | 24 th | Unit 5: Ideal and Real Gases | | | 24 | Concept of ideal gas, enthalpy and specific heat capacities of an ideal gas, | | 9 th | 25 th | P – V – T surface of an ideal gas, triple point, real gases, Vander-Wall's | | 9 | 23 | $\mathbf{r} - \mathbf{v} - \mathbf{i}$ surface of an ideal gas, triple point, leaf gases, valider-wants equation. | | | 26 th | Unit 6: Properties of Steam: | | | 20 | Formation of steam and related terms, thermodynamic properties of steam, | | | 27 th | Steam tables, sensible heat, latent heat, internal energy of steam, | | 4 oth | | | | 10 th | 28 th | entropy of water, entropy of steam, T- S diagrams, | | | 29 th | Mollier diagram (H - S Chart), Expansion of steam, Hyperbolic, reversible | | | | adiabatic and throttling processes, | | | 30 th | Determination of quality of steam (dryness fraction), | | 11 th | 31 st | 2 nd sessional test (Tentative) | | 11 | 31 | 2 Sessional test (Tentative) | | | 32 nd | Assessment | | | 33 rd | Unit 7: Steam Generators: | | | 33 | Uses of steam, classification of boilers, Function of various boiler mounting and | | | | accessories, | | 12 th | 34 th | Comparison of fire tube and water tube boilers. Construction and working of | | 14 | J -1 | Lancashire boiler, | | | 35 th | Nestler boiler, Babcock & Wilcox Boiler. | | | 33 | Introduction to modern boilers | | | 36 th | Unit 8: Air Standard Cycles | | | 30 | Meaning of air standard cycle – its use, condition of reversibility of a cycle | | | | Description of Carnot cycle, | | 13 th | 37 th | Otto cycle, Diesel cycle, simple problems on efficiency for different cycles. | | 13 | 38 th | Comparison of Otto, Diesel cycles for same compression ratio, same peak | | | 30 | pressure developed and same heat input. | | | | Reasons for highest efficiency of Carnot cycle and all other cycles working | | | | between same temperature limits | | | 39 th | Unit 9:Air Compressors | | | 39 | Functions of air compressor – uses of compressed air, type of air compressors | | 14 th | 40 th | Single stage reciprocating air compressor, its construction and working, | | 14 | 40 | representation of processes involved on P – V diagram, calculation of work | | | <u> </u> | representation of processes involved on r - v diagram, calculation of work | | | | done. | |------------------|------------------|---| | | 41 st | Multistage compressors – advantages over single stage compressors, use of air | | | 1 | cooler, | | | 42 nd | condition of minimum work in two stage compressor (without proof), simple | | | | problems | | | | Rotary compressors – types, working and construction of centrifugal | | ₄ ≂th | , ard | compressor, | | 15 th | 43 rd | axial flow compressor, vane type compressor | | | 44 th | 3 rd sessional test (Tentative) | | | 45 th | Assessment | | 16 th | 46 th | Revision | | | 47 th | Revision | | | 48 th | Revision | | 17 th | 49 th | Revision | | | 50 th | Revision | | - | 51 st | Revision |