Lesson Plan Name of the Faculty : Sh. Sunil Chaudhry Discipline : Mechanical Engineering Semester : 3rd Subject : Workshop Technology - I Lesson Plan duration: 17 weeks (01.10.2021 to 28.01.2022) Work load per week : Lecture -03, Practical -00 | Week | | Theory | |-----------------|------------------|--| | | Lecture | Topic | | | Day | (Including assessment/test) | | 1 st | 1 st | Unit 1: Welding: | | 1 | - | 1.1 Welding Process: Principle of welding, Classification of welding | | | | processes, Advantages and limitations of welding, | | | 2 nd | Industrial applications of welding, Welding positions and techniques, | | | | symbols. Safety precautions in welding. | | | 3 rd | 1.2 Gas Welding: Principle of operation, Types of gas welding flames and | | - nd | th | their applications | | 2 nd | 4 th | Gas welding equipment - Gas welding torch, Oxygen cylinder, acetylene | | | | cylinder, cutting torch, Blow pipe, Pressure regulators, Filler rods and fluxes | | | 5 th | and personal safety equipment for welding | | | 5 | 1.3 Arc Welding: Principle of operation, Arc welding machines and | | | 6 th | equipment. A.C. and D.C. arc welding | | | 0 | Effect of polarity, current regulation and voltage regulation, Electrodes: Classification, B.I.S. specification and selection, | | 3 rd | 7 th | Flux for arc welding. Requirements of pre heating, post heating of electrodes | | | , | and work piece, Welding defects and their testing methods | | | 8 th | 1.4 Other weldingProcesses: Resistance welding: Principle, advantages, | | | | limitations, working and applications of spot welding | | | 9 th | Seam welding, projection welding and percussion welding, Atomic hydrogen | | | | welding, | | 4 th | 10 th | Submerged arc welding, Welding distortion, welding defects, Shielded metal | | | | arc welding. Methods of controlling welding defects and inspection of | | | | welded joints | | | 11 th | 1.5 Modern Welding Methods: Methods, Principle of operation, | | | | advantages, disadvantages and applications of Tungsten inert gas (TIG) | | | | welding | | | 12 th | Methods, Principle of operation, advantages, disadvantages and applications | | | | ofMetal inert gas (MIG) welding | | 5 th | 13 th | Thermit welding, Electro slag welding, Electron beam welding, Ultrasonic | | | | welding, Laser beam welding, Robotic welding | | | 14 th | Unit 2: Foundry Techniques | | | | 2.1 Pattern Making: Types of pattern, Pattern material, Pattern allowances, | | | | Pattern codes as per B.I.S., | | | 15 th | Introduction to cores, core boxes and core materials, Core making procedure, | |-------------------|------------------|---| | 41- | 41- | Core prints, positioning of cores | | 6 th | 16 th | 2.2 Moulding and Casting: | | | | 2.2.1 Moulding Sand: Properties of moulding sand, their impact and control | | | | of properties viz. permeability, refractoriness, adhesiveness | | | $17^{\rm th}$ | Cohesiveness, strength, flow ability, collapsibility, Various types of | | | | mouldingsand, Testing of moulding sand. Safety precautions in foundry. | | | 18 th | 2.2.2 Mould Making: Types of moulds, Step involved in making a mould, | | | | Molding boxes, hand tools used for mould making, Molding processes: | | | | Bench molding | | 7^{th} | 19 th | 1 st sessional test (Tentative) | | | | | | | 20^{th} | Assessment | | | | | | • | 21 st | floor molding, pit molding and machine molding, Molding machines squeeze | | | | machine, jolt squeeze machine and sand slinger | | 8 th | 22 nd | 2.2.3 Casting Processes: Charging a furnace, melting and pouring both | | | | ferrous and non-ferrous metals | | | 23 rd | cleaning of castings, Principle, working and applications of Die casting | | | 24 th | hot chamber and cold chamber, Centrifugal casting | | | | | | 9 th | 25 th | 2.2.4 Gating and Risering System: Elements of gating system, Pouring | | | | basin, sprue, runner, gates, Types of risers, location of risers, Directional | | | | solidification | | | 26 th | 2.2.5 Melting Furnaces: | | | 20 | Construction and working of Pit furnace | | - | 27 th | Cupola furnace, Crucible furnace – tilting type, Electric furnace | | 10 th | 28 th | 2.2.6 Casting Defects: Different types of casting defects | | 10 | 20 | 2.2.0 Casting Detects. Different types of casting detects | | | 29 th | Testing of defects: radiography, magnetic particle inspection, Ultrasonic | | | 2) | inspection | | | 30 th | Unit 3: Metal Forming Processes | | | 30 | 3.1 Press Working - Types of presses, type of dies | | 11 th | 31 st | 2 nd sessional test (Tentative) | | 11 | 31 | 2 Sessional test (Tentative) | | | 32 nd | Assessment | | | 32 | AUSCOUMICIL | | | 33 rd | Selection of press die, die material. Press Operations-Shearing | | 12 th | 34 th | Piercing, trimming, punching, notching, shaving, gearing, embossing, | | 12 | J | stamping | | | 35 th | 3.2 Forging - Open die forging, closed die forging | | | 33 | 3.2 Forging - Open the forging, closed the forging | | | 36 th | Press forging, upset forging, swaging, up setters, Cold and hot forging | | | 30 | 1 1000 101gmg, upoct 101gmg, swagmg, up setters, Cold and not 101gmg | | 13 th | 37 th | 3.3 Rolling - Elementary theory of rolling, Types of rolling mills | | 13 | 38 th | Thread rolling, roll passes, Rolling defects and remedies | | | 30 | Tineau formig, fon passes, Koning defects and femedies | | | 39 th | 3.4 Extrusion and Drawing - Type of extrusion- Hot and Cold, Direct and | | | 39 | indirect, Pipe drawing, tube drawing, wire drawing | | 14 th | 40 th | Unit 4: Plastic Processing: | | 14 | 40 | | | | | 4.1 Industrial use of plastics, and applications | | | 41 st | Advantages and limitations of use of plastics | |------------------|------------------|---| | | 42 nd | 4.2 Injection moulding-principle, working of injection moulding machine. | | 15 th | 43 rd | Compression moulding- principle, and working of compression moudling machine. | | | 44 th | 3 rd sessional test (Tentative) | | | 45 th | Assessment | | 16 th | 46 th | Revision | | | 47 th | Revision | | | 48 th | Revision | | 17 th | 49 th | Revision | | | 50 th | Revision | | | 51 st | Revision | | | | |