Lesson Plan Name of the Faculty : Dr. Rajender Kumar Tayal Discipline : Mechanical Engineering Semester : 5th Subject : Theory of Machines (TOM) Lesson Plan duration: 17 weeks (01.10.2021 to 28.01.2022) Work load per week : Lecture -03, Practical -02 | Week | | Theory | |-----------------|------------------|---| | | | | | | Lecture | Topic | | | Day | (Including assessment/test) | | 1 st | 1 st | Subject introduction and overview | | | 2 nd | 1 Simple Mechanisms: 1.1 Kinematics of Machines: - Definition of Kinematics, Dynamics, Statics, Kinetics, Kinematic link, Kinematic Pair and its types | | | 3 rd | 1.1 Constrained motion and its types, Kinematic chain and its types | | 2 nd | 4 th | 1.1 Mechanism, inversion, machine and structure. | | | 5 th | 1.2 Inversions of Kinematic Chain: Inversion of four bar chain, coupled wheels of Locomotive & Pantograph. | | | 6 th | 1.2 Inversion of Single Slider Crank chain- Rotary I.C. Engines mechanism, Crank and Slotted lever quick return mechanism. | | 3 rd | 7 th | 1.2 Inversion of Double Slider Crank Chain- Scotch Yoke Mechanism & Oldham's Coupling. | | | 8 th | 2 Power Transmission:2.1 Introduction to Belt and Rope drives.2.2 Types of belt drives. | | | 9 th | 2.3 Concept of velocity ratio, slip and creep; crowning of pulleys (simple numericals) | | 4 th | 10 th | 2.4 Flat and V belt drive: Ratio of driving tensions, power transmitted, centrifugal tension, and condition for maximum horse power (simple numericals) | | | 11 th | 2.5 Different types of chains and their terminology | | | 12 th | 2.6 Gear Drive - Simple, compound, reverted and epicyclic gear trains(simple numericals) | | 5 th | 13 th | 2.7 Relative advantages and disadvantages of various drives | | | 14 th | Simple numericals | |------------------|------------------|--| | - | 15 th | Simple numericals | | 6 th | 16 th | 3. Flywheel: | | - | 17th | 3.1 Principle and applications of flywheel | | | 17 th | 3.2 Turning - moment diagram of flywheel for different engines. | | th | 18 th | 3.3 Fluctuation of speed and fluctuation of energy - Concept only. | | 7 th | 19 th | 1 st sessional test (Tentative) | | | 20 th | Assessment | | | 21 st | 3.4 Coefficient of fluctuation of speed and coefficient of fluctuation of energy. | | 8 th | 22 nd | Simple numericals | | | 23 rd | Simple numericals | | | 24 th | 4. Governor: 4.1 Function of a governor, comparison of flywheel and governor. | | 9 th | 25 th | 4.2 Simple description and working of Watt and Porter governor | | | 26 th | 4.2 Simple description and working of Hartnel governor | | | 27 th | 4.2 Simple numerical based on watt and porter governor | | 10 th | 28 th | 4.2 Simple numerical based on watt and porter governor | | | 29 th | 4.3 Terminology used in governors: Height, equilibrium speed, Hunting, isochronisms | | | 30 th | Stability, sensitiveness of a governor. | | 11 th | 31 st | 2 nd sessional test (Tentative) | | - | 32 nd | Assessment | | | 33 rd | 5. Cams: 5.1 Definition and function of cam | | 12 th | 34 th | 5.1 Description of different types of cams and followers with simple line diagram. | | | 35 th | 5.2 Terminology of cam profile. | | | 36 th | 5.3 Displacement diagram for uniform velocity. | | 13 th | 37 th | 5.3 Displacement diagram for S.H.M. | | | 38 th | 5.3 Displacement diagram for uniform acceleration and deceleration. | | Т | acth | | |------------------|------------------|--| | | 39 th | 6. Balancing: | | | | 6.1 Need of balancing, Concept of static and dynamic balancing. | | 14 th | 40 th | 6.2 Introduction to balancing of rotating masses in the same plane and | | | | different Planes (simple numericals) | | | | | | | 41 st | 6.2 Introduction to balancing of rotating masses in the same plane and | | | | different Planes (simple numericals) | | | | (| | | 42 nd | 7. Vibrations: | | | .2 | 7.1 Causes of vibrations in machines, Their harmful effects and remedies | | 15 th | 43 rd | 7.2 Types-longitudinal, transverse and torsional vibrations. | | 13 | T 3 | 7.3 Damping of vibrations | | | | 7.5 Damping of violations | | - | 44 th | 3 rd sessional test (Tentative) | | | 44 | 3 sessional test (Tentative) | | | 4 ~th | <u> </u> | | | 45 th | Assessment | | 41- | 41- | | | 16 th | 46 th | Revision | | | | | | | 47 th | Revision | | | | | | | 48 th | Revision | | | | | | 17 th | 49 th | Revision | | 1, | 17 | TC (1910II | | | 50 th | Revision | | | 50 | ICVISIUII | | | ~ 1 St. | Description. | | | 51 st | Revision | | | | |