Lesson Plan Name of the Faculty : Sh. Deepak Malhotra (T), Sh. Subhash Chander (P) Discipline : Mechanical Engineering Semester : 6th (Section A & B) Subject : **INSPECTION AND QUALITY CONTROL** Lesson Plan duration: 15 weeks (from 22nd March, 2021 to 2nd July, 2021) Work load per week : Lecture -03, Practical -02 | Week | Theory | | Practical | | |-----------------|------------------------|---|------------------------|---| | | Lecture
Day | Topic (Including assessment/test) | Practical Day | Topic | | 1 st | Day
1 st | 1. Inspection: Introduction, units of measurement, Standards for measurement, | Day
1 st | Introduction about the lab
and brief discussion over
the practical work to be
conducted. | | | 2 nd | Interchangeability. International, national and company standard, line and wavelength standards. | | | | | 3 rd | Planning of inspection: what to inspect? When to inspect? Who should inspect? Where to inspect? | | | | 2 nd | 4 th | Types of inspections: Remedial, preventive and operative inspection, incoming, in-process and final inspection. factors influencing the quality of manufacture. | 2 nd | Use of dial indicator for measuring taper. | | | 5 th | 2. Measurement and Gauging: Basic principles used in measurement and gauging- Mechanical, optical, Basic principles used in measurement | | | | | | and gauging- electrical, electronic | | | | 3 rd | 7 th | Study of various measuring instruments like: calipers, micrometers, | 3 rd | Use of combination set, Use of bevel protector, | | | 8 th | dial indicators, surface plate, straight edge, | | | | | 9 th | try square, protectors, sine bar, clinometer, | | | | 4th | 10 th | Comparators machanical aleatrical | 4 th | Use of sine bar for | |-----------------|------------------|--|-----------------|----------------------------| | 4111 | 10 | Comparators – mechanical, electrical | 4 | | | | a a th | and pneumatic | | measuring taper. | | | 11 th | slip gauges, tool room microscope, | | | | | | profile projector. | | | | | 12 th | Limit gauges: plug, ring, snap, taper | | | | | | and their applications for linear, | | | | | | angular, surface, thread Gear | | | | | | measurements, gauge tolerances, | | | | 5 th | 13 th | thread, height, depth, form, feeler, | 5 th | Measurement of thread | | | 13 | wire and their applications for linear, | 3 | characteristic using | | | | angular, surface, thread Gear | | vernier and gauges. | | | | - | | vermer and gauges. | | | 1.4th | measurements, gauge tolerances | | | | | 14 th | Measurement of geometrical | | | | | | parameter such as straightness, | | | | | | flatness and parallelism. | | | | | 15 th | Study of procedure for alignment tests | | | | | | on lathes, drilling machines | | | | 6 th | 16 th | Geometrical parameters and errors: | 6 th | Checking of Practical file | | | | Errors & their effect on quality, | | | | | | Concept of errors, | | | | | 17 th | 1 st sessional test (Tentative) | | | | | 1 / | 1 Sessional test (Tentative) | | | | | 18 th | Assessment | | | | | 10 | Assessment | | | | 7 th | 19 th | Study of procedure for alignment tests | 7 th | Measurement of thread | | , | 17 | on milling machines. Testing and | , | characteristic using | | | | | | vernier and gauges. | | | | maintenance of measuring | | vermer and gauges. | | | 20 th | instruments. | | | | | 20 | 3. Statistical Quality Control: Basic | | | | | | statistical concepts, empirical | | | | | -4 | distribution and histograms, | | | | | 21 st | Frequency, mean, mode, - Simple | | | | | | examples | | | | 8 th | 22 nd | standard deviation, - Simple examples | 8 th | Use of slip gauge in | | | | | | measurement of center | | | 23 rd | normal distribution, binomial and | | distance between two | | | | poisson distribution, Simple | | pins. | | | | examples. | | Pillo | | | 24 th | Introduction to control charts, | | | | | ∠ '1 | introduction to control charts, | | | | 9 th | 25 th | V = 1D = 11 = D = C = b = 4 | 9 th | Use of tool maker's | | 9 | 23 | X and R, x and σ,P, ηp,C charts | 9 | | | | 2 cth | D 10 1 | | microscope and | | | 26 th | P and C charts and their | | comparator. | | | | Applications. | | | | | 27 th | Sampling plans, selection of sample | | | | | | size, method of taking samples, | | | | | Ĭ | ., | | 1 | | | | frequency of samples. | | | |------------------|------------------|--|------------------|---| | 10th | 28 th | Inspection plan format and test reports | 10^{th} | Checking of Practical file | | | 29 th | 2 nd sessional test (Tentative) | | | | <u> </u> | 30 th | Assessment | | | | 11 th | 31 st | 4. Modern Quality Concepts: Concept of total quality management (TQM). | 11 th | Plot frequency distribution for 50 turned components. | | | 32 nd | National and International Codes. | | | | | 33 rd | ISO-9000, concept and its evolution. | | | | 12 th | 34 th | ISO-9000, concept and its evolution. | 12 th | With the help of given data, plot X, R charts, | | | 35 th | QC tools. Introduction to Kaizen, 5S | | | | _ | 36 th | 5. Instrumentation: Measurement of mechanical quantities such as displacement | | | | 13 th | 37 th | Measurement of mechanical quantities such as vibration | 13 th | With the help of given data, plot P and C charts. | | | 38 th | Measurement of mechanical quantities such as frequency | | | | _ | 39 th | Measurement of mechanical quantities such as pressure by electro mechanical transducers. | | | | 14 th | 40 th | Measurement of mechanical quantities such as temperature by electro mechanical transducers of resistance, capacitance & inductance type. | 14 th | Checking of Practical file | | | 41 st | 3 rd sessional test (Tentative) | | | | | 42 nd | Assessment | | | | 15 th | 43 rd | Revision | 15 th | Checking of Practical file & Evaluation | | | 44 th | Revision | | | | | 45 th | Revision | | |