Lesson Plan

Name of the Faculty : Sh. Munish Kumar Jain

Discipline : Mechanical Engineering

Semester : 4th

Subject : MATERIALS AND METALLURGY

Lesson Plan duration: 15 weeks (from 22nd March, 2021 to 2nd July, 2021)

Work load per week : Lecture -04, Practical -02

Week	Theory		Practical	
	Lecture	Topic	Practical	Topic
	Day	(Including assessment/test)		- 7
1 st	1 st	1. Introduction: Material,	Day 1 st	Classification of about 25
		Engineering materials,		specimens of
	2^{nd}	History/Timeline of Material Origin,		materials/machine parts
		Scope of Material Science,		into
	$3^{\rm rd}$	Overview of different engineering		(i) Metals and non
		materials and applications,		metals
		Importance,		(ii) Metals and alloys
	$4^{ m th}$	Classification of materials,		
		Difference between metals and non-		
1	.1	metals,	,	
2 nd	5 th	Physical properties of various	2 nd	Given a set of specimen
	#la	materials,		of metals and alloys
	$6^{ ext{th}}$	Mechanical properties of various		(copper, brass,
		materials, Present and future needs		aluminium, cast iron,
	th.	of materials,		HSS, Gun metal);
	7^{th}	Various issues of Material Usage-		identify and indicate the
	- th	Economical, Environment and Social,		various properties
	8^{th}	Overview of Biomaterials and semi-		possessed by them.
ord	oth	conducting materials	ard) Q 1 Q 1
3 rd	9 th	2. Crystallography: Fundamentals:	3 rd	a) Study of heat
		Crystalline solid and amorphous		treatment furnace.
	1 Oth	solid,		b) Study of a
	10 th	Unit Cell, Space Lattice,		thermocouple/pyromet
		Arrangement of atoms in Simple		er.
	11 th	Cubic Crystals, BCC,		
	11***	FCC and HCP Crystals,		

	12 th	Number of atoms per unit Cell in BCC, FCC, HCP		
4 th	13 th	Atomic Packing Factor, coordination number (without derivation), Defects/Imperfections	4 th	Study of a metallurgical microscope and a specimen polishing
	14 th	Types and effects in Solid materials, Deformation: Overview of deformation behaviour and its mechanisms,		machine
	15 th	Elastic and Plastic deformation		
	16 th	Behaviour of material under load and stress-strain curve		
5 th	17 th	Failure Mechanisms: Overview of failure modes,	5 th	To prepare specimens of following materials for
	18 th	Fracture, fatigue and creep		microscopic examination and to
	19 th	3. Metallurgy : Introduction, Cooling curves of pure metals,		Examine the microstructure of the specimens of following materials (at least any two) i) Brass ii) Copper iii) Cast Iron, iv) Mild Steel v) HSS, vi) Aluminium
	20 th	Dendritic solidification of metals, Effect of grain size on mechanical properties,		
6 th	21 st	Binary alloys, Thermal equilibrium diagrams,	6 th	Checking of practical File
	22 nd	Lever rule, Solid Solution alloys		
	23 rd	1 st Sessional Test (Tentative)		
	24 th	Assessment		
7 th	25 th	4. Metals And Alloys : Ferrous Metals: Different iron ores, Flow diagram for production of iron and steel,	7 th	To prepare specimens of following materials for microscopic examination and to
	26 th	Allotropic forms of iron- Alpha, Delta, Gamma. Basic process of manufacturing of pig iron and steel- making.		Examine the microstructure of the specimens of following materials (at least any two) i) Brass ii) Copper iii) Cast Iron, iv) Mild
	27 th	Cast Iron: Properties of cast iron, Types of Cast Iron,		
	28 th	Cast Iron manufacture and their uses		Steel v) HSS, vi) Aluminium

8 th	29 th	Steels: Plain carbon Steels and alloy steel, Classification of plain carbon steels	8 th	To anneal a given specimen and find out difference in hardness
	30 th	Properties and Application of different types of Plain Carbon Steels,		as a result of annealing.
	31 st	Effect of various alloying elements on properties of steel, Uses of alloy steels (high speed steel, stainless steel, silicon steel, spring steel)		
	32 nd	Non Ferrous Materials: Properties and uses of Copper, Properties and uses of Aluminium and their alloys		
9 th	33 rd	5. Heat Treatment : Definition and objectives of heat treatment, Iron carbon equilibrium diagram	9 th	To anneal a given specimen and find out difference in hardness as a result of annealing.
	34 th	Different microstructures of iron and steel. Formation and decomposition of Austenite, Martensitic Transformation		
	35 th	Various heat treatment processes- hardening, tempering, ,		
	36 th	annealing, normalizing,		
10 th	37 th	Various surface hardening processes carburizing, nitriding, cyaniding,	10 th	Checking of practical File
	38 th	Hardenability of Steels, Types of heat treatment furnaces (only basic idea), measurement of temperature of furnaces		
	39 th	2 nd Sessional Test (Tentative)		
	40 th	Assessment		
11 th	41 st	6. Plastics : Importance of plastics, Classification-thermoplastic and thermoset plastic	11 th	To normalize a given specimen and to find out the difference in hardness
	42 nd	Plastics and their uses,		as a result of normalizing.
	43 rd	Various trade names of plastics,		
	44 th	Plastic coatings, food grade plastics.		

12 th	45 th	Applications of plastics in automobile and domestic use	12 th	To normalize a given specimen and to find out
	46 th	Rubber classification - Natural and		the difference in hardness
	t b	synthetic. Selection of rubber		as a result of normalizing.
	47 th	7. Advanced Materials : Heat		
		Insulating materials- Asbestos,		
	th	glasswool, thermocole		
	48 th	Ceramics-Classification, properties,		
, -th	, , th	applications	, -th	
13 th	49 th	Refractory materials –Dolomite,	13 th	To harden and temper a
	~ oth	porcelain.		specimen and to find out
	50 th	Glass – Soda lime, borosil,		the difference in hardness due to tempering.
	51 st	Joining materials/Adhesives –		
		Classification, properties and		
		applications		
	52 nd	Abrasive materials, Composites-		
		Classification, properties,		
th	ud	applications	t b	
14 th	53 rd	Materials for bearing metals,	14 th	To harden and temper a specimen and to find out
	54 th	Materials for Nuclear Energy		the difference in hardness due to tempering.
	55 th	Smart materials- properties and		
		applications		
	56 th	3rd sessional test (Tentative)		
15 th	57 th	Assessment	15 th	Checking of Practical File & Evaluation
	58 th	Revision		
	59 th	Revision		
	60 th	Revision		