Lesson Plan Name of the Faculty : Sh. Munish Kumar Jain Discipline : Mechanical Engineering Semester : 4th Subject : MATERIALS AND METALLURGY Lesson Plan duration: 15 weeks (from 22nd March, 2021 to 2nd July, 2021) Work load per week : Lecture -04, Practical -02 | Week | Theory | | Practical | | |-----------------|-------------------|--|------------------------|----------------------------| | | Lecture | Topic | Practical | Topic | | | Day | (Including assessment/test) | | - 7 | | 1 st | 1 st | 1. Introduction: Material, | Day
1 st | Classification of about 25 | | | | Engineering materials, | | specimens of | | | 2^{nd} | History/Timeline of Material Origin, | | materials/machine parts | | | | Scope of Material Science, | | into | | | $3^{\rm rd}$ | Overview of different engineering | | (i) Metals and non | | | | materials and applications, | | metals | | | | Importance, | | (ii) Metals and alloys | | | $4^{ m th}$ | Classification of materials, | | | | | | Difference between metals and non- | | | | 1 | .1 | metals, | , | | | 2 nd | 5 th | Physical properties of various | 2 nd | Given a set of specimen | | | #la | materials, | | of metals and alloys | | | $6^{ ext{th}}$ | Mechanical properties of various | | (copper, brass, | | | | materials, Present and future needs | | aluminium, cast iron, | | | th. | of materials, | | HSS, Gun metal); | | | 7^{th} | Various issues of Material Usage- | | identify and indicate the | | | - th | Economical, Environment and Social, | | various properties | | | 8^{th} | Overview of Biomaterials and semi- | | possessed by them. | | ord | oth | conducting materials | ard |) Q 1 Q 1 | | 3 rd | 9 th | 2. Crystallography: Fundamentals: | 3 rd | a) Study of heat | | | | Crystalline solid and amorphous | | treatment furnace. | | | 1 Oth | solid, | | b) Study of a | | | 10 th | Unit Cell, Space Lattice, | | thermocouple/pyromet | | | | Arrangement of atoms in Simple | | er. | | | 11 th | Cubic Crystals, BCC, | | | | | 11*** | FCC and HCP Crystals, | | | | | | | | | | | 12 th | Number of atoms per unit Cell in BCC, FCC, HCP | | | |-----------------|------------------|---|-----------------|--| | 4 th | 13 th | Atomic Packing Factor, coordination number (without derivation), Defects/Imperfections | 4 th | Study of a metallurgical microscope and a specimen polishing | | | 14 th | Types and effects in Solid materials,
Deformation: Overview of
deformation behaviour and its
mechanisms, | | machine | | | 15 th | Elastic and Plastic deformation | | | | | 16 th | Behaviour of material under load and stress-strain curve | | | | 5 th | 17 th | Failure Mechanisms: Overview of failure modes, | 5 th | To prepare specimens of following materials for | | | 18 th | Fracture, fatigue and creep | | microscopic examination and to | | | 19 th | 3. Metallurgy : Introduction, Cooling curves of pure metals, | | Examine the microstructure of the specimens of following materials (at least any two) i) Brass ii) Copper iii) Cast Iron, iv) Mild Steel v) HSS, vi) Aluminium | | | 20 th | Dendritic solidification of metals,
Effect of grain size on mechanical
properties, | | | | 6 th | 21 st | Binary alloys, Thermal equilibrium diagrams, | 6 th | Checking of practical File | | | 22 nd | Lever rule, Solid Solution alloys | | | | | 23 rd | 1 st Sessional Test (Tentative) | | | | | 24 th | Assessment | | | | 7 th | 25 th | 4. Metals And Alloys : Ferrous Metals: Different iron ores, Flow diagram for production of iron and steel, | 7 th | To prepare specimens of following materials for microscopic examination and to | | | 26 th | Allotropic forms of iron- Alpha,
Delta, Gamma. Basic process of
manufacturing of pig iron and steel-
making. | | Examine the microstructure of the specimens of following materials (at least any two) i) Brass ii) Copper iii) Cast Iron, iv) Mild | | | 27 th | Cast Iron: Properties of cast iron,
Types of Cast Iron, | | | | | 28 th | Cast Iron manufacture and their uses | | Steel v) HSS, vi)
Aluminium | | 8 th | 29 th | Steels: Plain carbon Steels and alloy steel, Classification of plain carbon steels | 8 th | To anneal a given specimen and find out difference in hardness | |------------------|------------------|--|------------------|--| | | 30 th | Properties and Application of different types of Plain Carbon Steels, | | as a result of annealing. | | | 31 st | Effect of various alloying elements
on properties of steel, Uses of alloy
steels (high speed steel, stainless
steel, silicon steel, spring steel) | | | | | 32 nd | Non Ferrous Materials: Properties and uses of Copper, Properties and uses of Aluminium and their alloys | | | | 9 th | 33 rd | 5. Heat Treatment : Definition and objectives of heat treatment, Iron carbon equilibrium diagram | 9 th | To anneal a given specimen and find out difference in hardness as a result of annealing. | | | 34 th | Different microstructures of iron and steel. Formation and decomposition of Austenite, Martensitic Transformation | | | | | 35 th | Various heat treatment processes-
hardening, tempering, , | | | | | 36 th | annealing, normalizing, | | | | 10 th | 37 th | Various surface hardening processes carburizing, nitriding, cyaniding, | 10 th | Checking of practical
File | | | 38 th | Hardenability of Steels, Types of heat treatment furnaces (only basic idea), measurement of temperature of furnaces | | | | | 39 th | 2 nd Sessional Test (Tentative) | | | | | 40 th | Assessment | | | | 11 th | 41 st | 6. Plastics : Importance of plastics, Classification-thermoplastic and thermoset plastic | 11 th | To normalize a given specimen and to find out the difference in hardness | | | 42 nd | Plastics and their uses, | | as a result of normalizing. | | | 43 rd | Various trade names of plastics, | | | | | 44 th | Plastic coatings, food grade plastics. | | | | 12 th | 45 th | Applications of plastics in automobile and domestic use | 12 th | To normalize a given specimen and to find out | |------------------|------------------|---|------------------|---| | | 46 th | Rubber classification - Natural and | | the difference in hardness | | | t b | synthetic. Selection of rubber | | as a result of normalizing. | | | 47 th | 7. Advanced Materials : Heat | | | | | | Insulating materials- Asbestos, | | | | | th | glasswool, thermocole | | | | | 48 th | Ceramics-Classification, properties, | | | | , -th | , , th | applications | , -th | | | 13 th | 49 th | Refractory materials –Dolomite, | 13 th | To harden and temper a | | | ~ oth | porcelain. | | specimen and to find out | | | 50 th | Glass – Soda lime, borosil, | | the difference in hardness due to tempering. | | | 51 st | Joining materials/Adhesives – | | | | | | Classification, properties and | | | | | | applications | | | | | 52 nd | Abrasive materials, Composites- | | | | | | Classification, properties, | | | | th | ud | applications | t b | | | 14 th | 53 rd | Materials for bearing metals, | 14 th | To harden and temper a specimen and to find out | | | 54 th | Materials for Nuclear Energy | | the difference in hardness due to tempering. | | | 55 th | Smart materials- properties and | | | | | | applications | | | | | 56 th | 3rd sessional test (Tentative) | | | | 15 th | 57 th | Assessment | 15 th | Checking of Practical File & Evaluation | | | 58 th | Revision | | | | | 59 th | Revision | | | | | 60 th | Revision | | |