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         TWO PORT 

NETWORK 

• A Network having two pair of terminals . 

• Two port networks act as building blocks of 

electrical or electronic circuits. 

• One pair of terminal is connected to energy  
source and other pair of terminals is  
connected to load. 

• A transmission line ,an amplifier, a  
transformer are examples of two port n/w. 
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TWO PORT NETWORK 

V2 

V1,V2 : Voltages at i/p & o/p ports  

 I1 ,I2  :  Currents at i/p & o/p ports 

Out of four variables,only two are dependent 

variables. 

RL 



 The dependence of two of four variables  of 

two port n/w can be expressed in number  of 

ways with the help of parameters. 

 An important aspect of two port  

representation is that all the parameters  

can be obtained from measurements  

made at the i/p &o/p ports. 

TWO PORT NETWORK 



TWO PORT NETWORK 

 The internal cktry of the n/w need not known. 

 Often the circuit between the two ports is highly 

complex. These networks are linear and passive  

and may contain controlled sources but not  

independent sources inside. 



TWO PORT NETWORK 
 The two port parameters provide a shorthand  

method for analyzing the input-output 

properties  of two ports without having to deal 

directly with  the highly complex circuit internal 

to the two port. 

 A two-port network makes possible the 

isolation  of either a complete circuit or part of 

it and  replacing it by its characteristic 

parameters. 



NETWORK ELEMENTS 

 LINEAR & NONLINEAR: Elements following  

linear relationship between V & I,known as  linear 

elements otherwise nonlinear. 

 UNILATERAL& BILATERAL: If the magnitude  of 

the current passing through that element is  

affected due to change in polarity of the  applied 

voltage then known as unilateral  element 

e.g.Diode,Transistors otherwise  bilateral e.g R,L & C. 



ACTIVE &PASSIVE ELEMENTS 

•If a circuit element has the capabilities of  

processing or enhancing the energy level of 

a signal passing through it,is called an active  

element e.g.transistor,opamp etc. 

•Resistors, inductors&capicitors etc. are passive  

as they don't have any intrinsic means of signal 

boosting. 

NETWORK ELEMENTS 



CLASSIFICATION OF NETWORK 

• SYMMETRICAL NETWORK: 

•  It is one whose electrical  

characteristics do not change when its  

input and output terminals are  

interchanged. 

• Symmetrical network offers same 

impedance at the input and output 
terminals. 
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SYMMETRICAL T- NETWORK 
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ASYMMETRICAL NETWORK 

•  It is one whose electrical characteristics  

changes when its input and output  

terminals are interchanged. 

•  Asymmetrical network doesn't offer  

same impedance at the input and output  

terminals. 

CLASSIFICATION OF NETWORK 
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Asymmetrical T-Networks: 
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BALANCED NETWORK 

 

•  It is one , in which all the series  

impedances are identical/same and also  

these are symmetrical with respect to  

ground.Thus,the corresponding series arm  

impedances must be equal. 



BALANCED T N/W 
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BALANCED - Network 

CLASSIFICATION OF NETWORK 
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CLASSIFICATION OF NETWORK 
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LADDER NETWORK  

It is one which consists of a large number of  

similar networks connected one after other. A  

ladder network may be balanced network or  

unbalanced network . 



LADDER NETWORK ,T TYPE  



LADDER NETWORK , TYPE 



NETWORK  CONFIGURATION 

In any two port network, the impedance can  

be configured together to acquire different  

shapes, commonly known as the configuration  

of network. 

1. T-section. 2. -section. 

3. Half Section. 4. L-section 

5. Lattice Section. 6. Bridge T-section 



T-

SECTION 

A network that looks like alphabet ‘T’ is  

called T-section. T section can be  

symmetrical and asymmetrical. Both the  

series impedance are same in  

symmetrical T network. 



ASYMMETRICAL T-NETWORKS 
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-

SECTION 

The network section  which  

looks like ‘’ is called -section. -  

section can be symmetrical and  

asymmetrical. In symmetrical -  

section, both the shunt impedance  

are same. 
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SYMMETRICAL  NETWORK 



HALF 

SECTION 

A half section is used for impedance  

maching purpose. A half section is  

obtained by splitting symmetrical T or  

sections into two halves. Each half is  

known as half section. Half section  

obtained is asymmetrical in nature. 
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L-SECTION 

When the network section looks like 

alphabet ‘L’ the configuration is termed as 

‘L section’. When one of 

Impedance is made equal 

the  series.  

to Zero of 

asymmetrical T-section and 

shunt impedances  

section  is made 

of asymmetrical  

equal  to infinity, 

one of the 

 

the 

resultant network is called L-section. 



L-SECTION 

Z1 
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LATTICE 

SECTION 

zs1 

 
zd2 

•Lattice section can be symmetrical and  

asymmetrical. 



BRIDGE T-

SECTION 

 When an impedance used to bridge the  series

 impedance of  

          a symmetrical 

 symmetrical and asymmetrical. 

Network formed is called Bridge T 

network. Bridge T network can be 



Bridge T-section 
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SYMMETRICAL NETWORK 

Symmetrical Network have two  

important properties: 

• (i) Characteristic Impedance ‘Z0’ 

• (ii) Propagation Constant ‘’ 



CHARACTERISTICS IMPEDANCE 

•  If an infinite number of identical symmetrical  

networks are joined. The impedance measured  

at the input end of the first network has a value  

which depends upon the network used. This  

impedance is the characteristics impedance Z0. 

•  Characteristic Impedance value can be  

known if the component values of the network  

are known. 



 It is the impedance which when 

connected  at one port of symmetrical n/w 

produces  same impedance at other port 

of n/w. 

 If both input and output are terminated 

in  Z0, the network is said to be correctly 

or  property terminated. 

CHARACTERISTICS IMPEDANCE 
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CHARACTERISTICS IMPEDANCE 
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Z0T= z1/2+[z1/2+z0]z2 

Z1/2+z0+z2  

Solving this equation, We get 

oT Z = 
4 

Z1
2 
+ Z1 Z2 

ZoT=z1z2(1+z1/4z2) 

Evaluation of  characteristic impedance 



Z1 

Z2 Z2 

SYMMETRICAL  NETWORK 

Zo Zo 

Zo  = 
  Z1Z2  

1+Z1/4Z2 



RELATION BETWEEN ZOT & ZO 

Zo = Z1Z2 

ZOT 

Chacteristic impedeance is also given by:  

zoc zsc 



PROPAGATION CONSTANT 

•  Symmetrical networks have another  

property called propagation constant which  

gives relation between the input and output  

current or voltage. 

•  Propagation Constant is generally  

denotated by ‘ ’ ,which is a complex  

number. 

&  =  + j 



IS 

= = 
I1 I2 

I1 I2 I3 

......= e  

For two sections: Is I1 e  

I1 I2 

= = 

For a recurrent n/w,having cascaded identical  

symmetrical n/w sections: 



PROPAGATION CONSTANT 



And for n-section,  

current ratio becomes 
Is/ Ir = en 

&  =  + j 

e = e +ej  = e .ej  

e = e (cos +jsin ) 

= e  cos2 + sin2 tan-1sin 

cos  

= e      



Attenuation constant(): 

 It represents loss of signal energy during  

 propagation through the network in terms 

 of magnitude. Unit of  are nepers. 

Phase shift constant(): 
 It represents change of phase of the signal 

 during  its propagation through network. Unit of 

  are radians. 

PROPAGATION CONSTANT 



PROPAGATION CONSTANT OF A SYMMETRICAL T-

NETWORK 
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ASYMMETRICAL 

NETWORK 

Asymmetrical networks have different input and  

output impedance. 

PROPERTIES OF ASYMMETRICAL  

NETWORKS 

 Iterative impedance 

 Image impedance 

 Image Transfer Constant 

 Iterative Transfer Constant 



ITERATIVE IMPEDANCE 

•  For a two port Asymmetrical network,  

iterative impedance is defined as the input  

impedance measured at one pair of terminals  

when other pair of terminals is terminated  

with an impedance of the same value. 

•  It may be defined as the impedance which  

will terminate the other terminals in such a  

way that the impedance measured at the first  

pair of terminals is equal to the terminating  

impedance. 



 Iterative impedance are

 different for the  two pair of 

terminals. 

 Each asymmetrical network has two  

iterative, termed as Zt1and Zt2. 

ITERATIVE IMPEDANCE 



Iterative Impedance 

zt1 
zt1 

zt2 zt2 





IMAGE

 IMPEDANC

E 

• Image impedance of a network are those 

impedance, such  

across the proper 

that if  one is connected  

pair  of terminals of the 

network, the other is presented by the other pair  

of terminal. 

•  Every asymmetrical network has two  

different image impedances. 

•  Asymmetrical network is correctly terminated  

when it is terminated in its image impedances. 



-Image impedances which  simultaneously 

terminate each pair  of terminals of a n/w in such a 

way  that at each pair of terminals the  impedance 

in both direction are  equal. 



IMAGE TRANSFER CONSTANT  ‘I’ 

•In case of asymmetrical network, the factors 

affecting propagation of energy is defined in  

terms of Image Transfer constant ‘i’, if the  

network terminated in image impedance. 

• ‘I’ is also a complex quantity like ‘’ . 



And I’ = AI + JBI 

Here ‘Ai’ is a real term called Image  

attenuation constant. Units of Ai are nepers  

whereas ‘Bi’ is an imaginary term called  

Image phase shift constant. Unit of Bi are  

radians. 
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IMAGE TRANSFER CONSTANT 

‘I’ 

ei= V1I1 

V2I2 



ITERATIVE TRANSFER CONSTANT ‘T’ 

If asymmetrical network is terminated  

with iterative impedance, factors affecting  

the energy propagation are defined in  

terms of iterative constant ‘t’. Iterative  

transfer constant is a complex  

number. 

t = At + jBt 



t = At  + jBt 

Where, At = _Iterative attenuation constant &  

unit of At are nepers. 

Bt = Iterative phase constant & units  

of Bt are radians. 

ITERATIVE TRANSFER CONSTANT ‘T’ 
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INSERTION 

LOSS 

insertion loss of •  The  

defined  

decibels 

as the number 

by which the signal power 

a network  is  

of  nepers or 

is 

reduced by the insertion. 

• Whenever a passive network is inserted  

between an energy source and load, it  

generally produces a loss in received  

power. 



•Insertion  

reduction 

of  a passive network introduces  

in output voltage and current. This 

reduction in output voltage and current is termed  

as insertion loss and is measured in nepers (Np)  

and decibels (dB). 

•Insertion loss not only depends upon the network  

but also depends upon source and load  

impedance. 

INSERTION LOSS 



INSERTION LOSS 

I1 = Load current without insertion of N/W  
I2 = Load current after insertion of N/W 

ZS = Source impedance ZL = Load impedance 



INSERTION LOSS 



Insertion loss mainly depends upon; 

• Attenuation constant & phase shift constant. 

• Impedance matching between; 

(a) Source & load impedance. 

(b)Input impedance of the network & source  

impedance. 

(c)Output impedance of the network & load  

impedance. 

INSERTION LOSS 



UNIT -II 

 

 Attenuator 



ATTENUATOR NETWORK: 
 

An attenuator network must fulfil 

following conditions. 

 It must give correct input impedance, 

 It must give correct output impedance 

and 

 It must provide specified attenuation. 

 



ATTENUATOR NETWORK: 
 

In general, attenuation is expressed in decibel as follows, 
 

where D is the attenuation in decibel. 



 

 
But we can express attenuation in neper as follows, 
 

where N is the attenuation in neper. 
 



In this topic, we shall study symmetrical 

attenuators such as symmetrical T type, 

symmetrical π type, lattice type and bridged 

T type, along with asymmetrical attenuator 

such as ‘L’ type attenuator. 

Any Attenuator Network is designed for 

specified characteristic resistance R0 and 

attenuation. 

Let us find design equations for various 

Attenuator Network one by one. 



Symmetrical T Type Attenuator: 

 Consider properly terminated symmetrical T network as shown in the Fig.1 
 

Fig. 1 Symmetrical T Type 

Attenuator 



According to current divider rule, 
 

But for symmetrical networks, 
 

For properly terminated network, input impedance Rin is given by, 
 



From equation (2), 
 

From equation (2), we can write, 
 

Equations (A) and (B) are called design equations of 

symmetrical T attenuator. 



Symmetrical π Type Attenuator: 

Consider properly terminated symmetrical π network as shown in the Fig. 2. 

Symmetrical π Type 

Attenuator 



Let the characteristic impedance be pure resistive i.e. R0 and  

propagation constant γ = α. Then according to the theory of  

symmetrical network, the shunt arm and series arm can be 

 expressed in terms of R0 and α as follows, 



Simplifying equation (1)… 

Simplifying equation (2), 



Multiplying numerator and denominator by factor eα/2 on right hand side of the equation, 
 

Equations (A) and (B) are called design equations of symmetrical π 

attenuator. 



Symmetrical Lattice Type Attenuator: 

Consider properly terminated lattice Attenuator Network as shown in the Fig. 3 (a). 

  

Fig. 3 Symmetrical Lattice 

Type Attenuator 



According to the theory of the symmetrical networks, characteristic impedance is the geometric mean of open and short circuit impedance. 

 

Consider lattice network shown in the Fig. 3 (a) and (b) with open and short circuit output terminals 

respectively. 



By definition, characteristic impedance is given by, 

 

Consider Fig. 3, applying KVL to closed path A-1-2-2′-1′-2-A, we can write, 

 



Thus, we can write, 
 

Applying KVL to closed path A-1-2′-2–1′-B-A, we can write, 
 

Equations (A) and (B) are called design equations of symmetrical lattice attenuator. 



Bridged T Attenuator: 

 

Consider properly terminated bridged T network as shown in the Fig. 4. 

Assuming 3 loop currents 

 in clockwise direction as shown. 
 

   Fig – 4    Bridged 

T Attenuator 

 



Consider closed path 1-A-B-1′-1, applying KVL, 
 

Consider closed path A-2-2′-B-A, applying KVL, 
 

Consider closed path C-D-2-A-1-C, applying KVL, 

 

Adding equations (1) and (2), 
 



From equation (1) we can write, 

 

Substituting value of I3 in 

 

Substituting value of RB from equation (A) we can write, 

 

Equations (A) and (B) are called design equations of bridged T attenuator. 



L Type Asymmetrical Attenuator: 

An asymmetrical L type attenuator is as shown in the Fig. 5. 
 

Fig – 5  L- Type 

Asymmetrical Attenuator 



Input resistance looking into network from 

terminals 1-1′ is 

 



Putting value of R2 from equation 

(A), 

equations (A) and (B) are called design 

equations of asymmetrical L type 

attenuator. 



  

CHAPTER-3  

 

FILTERS 



Low Pass Filter: 
 
 

The prototype T and π low pass filter sections are as shown in the 

Fig. 1. 

 

 

 Fig 1  Prototype T and π low pass filter  



Design Impedance (R0): 
Here in low pass filter sections, 

Total series arm impedance Z1 = jωL 

Total shunt arm impedance Z2 = -j/ωC 

Hence, Z1 . Z2 = (jωL) (-j/ωC) = L/C which is real and constant. Hence sections are 

constant K sections so we can write, 

 

Reactance Curves and Cut-off Frequency Expression: 

As both T and π sections have same cut-off frequency, it is sufficient to calculate 

fc for the ‘T’ section only. 

 

The reactance curves are as shown in the Fig. 2 



Fig 2 Reactance Frequency sketch for prototype low 

pass filter 



From above characteristic it is clear that all the reactance curves have positive slope as all 

curves slope upward to the right side with increasing ω. 

The curves are on opposite sides of the frequency axis upto point A; while on the same 

side, from point A on wards. Hence all the frequencies upto point A give pass band  

and above point A give stop band. Thus point A marks cut-off frequency given by ω = ωc. 

At point A, ω = ωc, the curve for (X1/4 + X2) crosses the frequency axis, hence we can 

write, 

 

. 
The algebraic approach to calculate cut-off 

frequency is as follows 



From above expression it is clear that, Z0T is real if ω2LC/4 < 1 and imaginary if ω2LC/4  > 1. 

 Hence condition ω2LC/4 -1 = 0 gives expression, 

 

Thus, above prototype section passes all frequencies below ω = 2/√LC while attenuates all frequencies above 

 this value. Therefore cut-off frequency of low pass filter is given by 

 

Above frequency comes out to be the same 

as calculated by reactance sketch method. 



Variation of Z0T and Z0π with Frequency: 

Consider expression 
 

From equation (2), we can write 
 

Similarly we can write, 



Hence 

 

From equation (5), it is clear that as frequency increases from 0 to fc, Z0T decreases from R0 to 0 in passband.  

For π section, from equation (6), 

 it is clear that in pass band as frequency increases for 0 to fc, Z0π increases from R0 to ∞. 

The variation of Z0T and Z0π with frequency is as shown in the Fig. 3 

 

Fig 3 Variation of characteristics impedance with 

frequency 



Variation of Attenuation Constant α with Frequency: 

In pass band attenuation is zero. In stop band attenuation is given by, 
 

In stop band  as frequency f increases above fc, attenuation also increases. The variation of α with frequency is as shown in the Fig. 4. 

Fig 4 Variations of attenuation 

constant with frequency 



Variation of Phase Constant β with Frequency: 

In stop band, phase constant β is always equal to π radian. In pass band where α = 0, 

the phase constant β is given by 

 

As frequency increases from 0 to fc, β also increases from 0 to π radian. The variation of β with frequency is as shown  

 

 

Design Equations of Prototype Low Pass Filter: 
The design impedance R0 and cut-off frequency fc can be given in terms of L and C as follows. 

 

Dividing equation for R0 by fc, we get, 

Variation of phase constant with 

frequency 



Multiplying equation for R0 and fc we get, 

Equations (9) and (10) are called design equations for 

prototype low pass filter sections. 



High Pass Filter: 

The prototype high pass filter T and π sections are as shown in 

the Fig. 6. 
 

 

 

Fig 6 Prototype T and 𝜋  high 

pass filter  



Design Impedance (R0): 

Total series arm impedance Z1 = -j/ωC 

Total shunt arm impedance Z2 = jωL 

Hence, Z1 . Z2 =(-j/ωC) (jωL) = L/C which is real and constant. Hence above 

sections are constant K sections. So we can write, 
 

  



Reactance Curves and Expression for Cut-off Frequency: 

As both T and π sections have same cut-off frequency, it is sufficient to 

calculate the cut-off frequency for the T section only. 

Fig 7 Reactance frequency Sketch 



The reactance curves are as shown in the Fig. 7. 

From above characteristics it is clear that all the reactance curves have positive slope as 

all curves slope upward to the right side with increasing ω. 

Here the curves are on the same side of the horizontal axis up to the point B, giving a 

stop band. For frequencies above point B, the curves are on opposite sides of the axis, 

giving pass band. Thus, point B gives cut-off frequency, represented as ω = ωc. 

At point B, ω = ωc, the curve for (X1/4 + X2) crosses the frequency axis, hence we 

can write, 

 

The algebraic approach to calculate cut-off frequency is as follows. 



From above expression it is clear that, Z0T is real if 1/4ω2LC < 1 and imaginary if 1/4ω2LC > 1.  

Hence condition 1 – 1/4ω2LC = 0 gives expression, 

 

Thus, above prototype section passes all frequencies above ω = 1/2√LC while attenuates all frequencies below this  

value. Therefore cut-off frequency of high pass filter is given by 

 

Above frequency comes out to be same as frequency calculated by reactance sketch method. 



Variation of Z0T and Z0π with Frequency: 

Consider expression for Z0T as 

 

From equation (2) we can write, 

 

Similarly we can write, 

 

Hence, 

 

From equation (5), it is clear that as frequency f increases from fc to ∞ in pass band, Z0T also increases from 0 to 

R0.  

For π section, from equation (6), it is clear that as frequency increases from fc to ∞, Z0 decreases from ∞ to R0 

 in pass band. The variation of Z0T and Z0π with frequency is as shown in Fig. 8 



Fig 8 Variation of Characteristics 

impedance with frequency 



Variation of Attenuation Constant (α) with Frequency: 

In pass band, attenuation is zero (α = 0). In stop band attenuation is given by 

 

In stop band, as frequency f increases from 0 to fc, attenuation decreases from ∞ to 0. The variation of attenuation 

 constant α with frequency is as shown in the Fig. 9 

 

Fig 9 Variation of attenuation 

constant with frequency 



Variation of Phase Constant β with Frequency: 

In stop band, phase constant β is always π radian. In pass band where α = 0, the phase 

angle β is given by 

 

From the above equation it is clear that in pass band when frequency f increases from fc to ∞, β decreases to 0. The variation of phase 

 constant β with frequency is as shown in the Fig. 10. 

 

Fig 10 Variations of phase 

constant with frequency 



Design Equations of Prototype High Pass Filter: 

The design impedance R0 and cut-off frequency fc for high pass filter section can be given in terms of L and C as follows 

 

Dividing equation for R0 by fc, we get, 

 

Multiplying equation for R0 and fc, we get, 

 

Equation (9) and (10) are called design equations of prototype high pass filter sections. 



Band Pass Filter: 

Band pass filter pass a certain range of frequencies  

(called as pass band) while attenuate all other frequencies.  

Such band pass filters can be obtained by connecting 

 low pass filter sections in cascade with high pass filter sections  

as shown in Fig. 11. 

 
 

Fig 11 



In above type of connection, the cut-off frequency of low pass filter section must be selected higher than  

that of high pass filter section. Although cascade connection of low pass filter and high pass filter sections  

functions properly as band pass filter, it is more economical to combine both sections in one single filter 

 section. An alternative form of band pass filter can be obtained either as a T or π section if series arm 

 contains a series resonant circuit while the shunt arm contains a parallel resonant circuit as 

 shown in the Fig. 12 (a) and (b). 
 

Fig 12 Prototype T and 

𝜋 𝑏𝑎𝑛𝑑 𝑝𝑎𝑠𝑠 𝑓𝑖𝑙𝑡𝑒𝑟 



The band pass filter characteristics can be obtained by using conventional band 

pass filter (either T or π type) as shown in the Fig. 9.16, if the series resonant 

frequency of the series arm is selected same as anti resonant frequency of the 

shunt arm. Consider T type band pass filter section as shown in the Fig. 9.16 (a). 

Let the frequency of series and shunt arm be ω0 rad/sec. 

Then, for series arm, frequency of resonance is given by, 
 

Similarly for shunt arm, frequency of anti resonance is given by, 
 

From equations (1) and (2), for same resonant frequencies of series and shunt 

arms we can write, 



Design Impedance (R0): 
Total series arm impedance Z1 is given by 
 

Similarly, total shunt arm impedance Z2  is given by 

 



Hence, Z1 Z2 = L2/C1 = L1/C2  which is real and constant. Hence above sections 

are constant k sections.  

o we can write, 
 

Reactance Curves and Expressions for Cut-off Frequencies: 

To verify the band pass characteristics, let Z1 = j X1 and Z2 =j X2. Similar to the reactance 

curves drawn for low pass filter section and high pass filter section,  

sketching reactances X1 and (X1/4 + X2) against frequency f as shown in the Fig. 13. 



Fig 13 Reactance 

frequency sketch 



From the above characteristics it is clear that the reactance curves for X1 and 

(X1/4 + X2) are on the 

 same sides the axis below f1 and above f2. At the same time, the reactance 

curves between f1 and f2 are 

 on opposite sides of frequency axis. Thus frequencies between f1 and 

f2 constitute a pass band ; while  

the frequencies below f1 and above f2 give stop band. Hence the section 

considered shows band pass filter 
  characteristics where f1 and f2 are lower and upper cut-off frequencies of the 

filter. 

In band pass filter, condition for cut-off frequency is, 
 

But from the condition of constant-k filter section, Z1 Z2 = R2
0 

 



From above equation (7) it is clear that the value of the series arm impedance Z1 can be obtained at two 

 different cut-off frequencies namely f1 and f2. So at f = f1, Z1 = – j(2 R0) and at f = f2 , Z1 = + j(2 R0).  

Thus impedance Z1 at f1, i.e. lower cut-off frequency, is negative of the impedance Z1 at f2  
i.e. upper cut-off frequency. Hence we can write, 

 

But from equation (1) we can write, 



Substituting value of (L1 C1) in above equation (8), we can write, 

 

Simplifying above equation, 

 

Hence, above equation (9) indicates that frequency of resonance of the individual arms 

is the geometric mean of two cut-off frequencies: 

https://www.eeeguide.com/wp-content/uploads/2019/11/Band-Pass-Filter-12.jpg


Variation of Z0T and Z0π, Attenuation 

Constant (α) and Phase Constant (β) 

with Frequency: 

The variations of Z0T and Z0π, attenuation 

constant (α) and phase shift (β) with frequency 

are as shown in the Fig. 14. (a), (b) and (c). 

Consider that the design impedance of band 

pass filter is R0 and cut-off frequencies are 

f1 and f2. 



Fig 14 Variation of phase shift with 

frequency 



Design Equations: 
Consider that the filter is terminated in design impedance R0 and the cut-off 

frequencies are f1 and f2. 

Then from equation (7), at the lower cut-off frequency f1, we can write, 
 



But for band pass filter constant k section 

 

Substituting the value of C1 from equation (10), 

 

As f2
0 = f1 f2, we get 

 

From equation (6), we can write, 



Substituting value of L1 from equation (11), 

 

From equation.(6), we can write, 

 

Substituting value of C1 from equation (10), 

 

Equations (10) to (13) are called design equations of prototype band pass filter sections. 



Band Stop Filter: 

Band Stop Filter stop a range of frequencies between 

two cut-off frequencies f1 and f2 while pass all the 

frequencies below f1 and above f2. Thus range of 

frequencies between f1 and f2 constitutes a stop band 

in which attenuation to the frequencies is infinite 

ideally. The frequencies below f1 and above 

f2 constitute two separate pass bands in which 

attenuation to the frequencies is zero ideally. 

The Band Stop Filter can be obtained by connecting 

low pass filter and high pass filter sections in parallel 

where cut-off frequency of the low pass filter section 

is less than that of the high pass filter section. But the 

economical form of the band elimination filter can be 

obtained by combining the low pass and high pass 

filter section if series, arm contains parallel resonant 

circuit while shunt arm contains series resonant circuit 

as shown in the Fig. 15 (a) and (b). 



Fig 15 Prototype Band 

pass filter 



The band elimination characteristics can be obtained by using conventional Band Stop Filter (either T or π type) as shown in the Fig. 15, 

 if the series resonant frequency of the shunt arm is selected same as the parallel resonant frequency of the series arm.  

Consider ‘T’ type band elimination filter section as shown in the Fig. 15(a).Let the frequency of the series and shunt arm be ω0 rad/sec. 

 Then for series arm, frequency of anti resonance is given by, 

 

Similarly, for shunt arm, frequency of resonance is given by, 

 

From equations (1) and (2), for same resonant frequencies of series and shunt arm resonant circuit we can write, 

 



Design Impedance (R0): 
Total series arm impedance is given by, 

 

Similarly, total shunt arm impedance Z2 is given by, 

 

Hence Z1Z2 = L2/C1 = L2/C2 which is real and constant. Hence above sections are constant k sections. So we can write, 

 



Reactance Curves and Expressions for Cut-off Frequencies: 

To verify the band elimination characteristics, let Z1 =j X1 and Z2 =j X2. The reactance 

curves of X1 and X1/4 + X2 against frequency are as shown in the Fig. 16 

 

From the above characteristics it is clear that the reactance curves for X1 and (X1/4 + X2) are on the same sides of the 

 frequency axis between f1 and f2 which indicates stop band. 

Fig 16 Reactance 

frequency sketch 



These curves are on opposite sides of the axis below f1 and above f2 which indicates two pass band.  

Hence for the given section, the characteristics are of band elimination filter where f1 and f2 are the cut-off frequencies. 

In Band Stop Filter, the condition for cut-off frequencies is given by 

 

But from the condition of constant K filter section, Z1Z2 = R2
0 

 

From above equation it is clear that the value of the series arm impedance Z1 can be obtained at 

two different cut-off frequencies namely f1 and f2. So at f = f1, Z1 = + j(2 R0) and at f = f2, Z1 = -j(2 

R0). Thus impedance Z1 at f1, i.e. at lower  

cut-off frequency, is negative of the impedance Z1 at f2 i.e. upper cut-off frequency. Hence we can 

write, 



But from equation (1), frequency of resonance is given by 

 

Substituting value of (L1 C1 ) in above equation, we can write, 

 

Simplifying above equation, 



Hence, above equation (9) indicates that in band elimination 

filter, the frequency of resonance of the individual arms is 

the geometric mean of two cut-off frequencies. 



Variation of Z0T and Z0π, Attenuation 

Constant (α), Phase Constant (β) with 

Frequency: 

 

The variations of Z0T  and 

Z0π, attenuation constant (α) and phase shift 

(β) are as shown in the Fig. 9.22 (a), (b) and 

(c) respectively. Consider that f1 and f2 are 

two cut-off frequencies and R0 is the design 

impedance of the Band Stop Filter. 



Fig 

17  



Design Equations: 

Consider that a band elimination filter with two cut-off frequencies f1 and f2 is 

terminated in design impedance R0. Then, from equation (7), at lower cut-off frequency 

f1, we can write, 

 



For band elimination filter constant K section, frequency of resonance in series arms is given by, 
 

Substituting value of L1 in above equation, 
 

From equation (6) we can write, 
 



Substituting value of L1 from equation (10), 

 

Similarly from equation (6) we can write, 

 

Substituting value of C1 from 

equation (11), 
 

Equations (10) to (13) are called design equations of prototype band 

elimination filter sections. 



m Derived Filters: 
m Derived Filters – The first disadvantage of prototype 

filter sections can be overcome by connecting two or 

more prototype sections of same type (either all T type 

or all π type) in cascade. In such a cascade connection, 

attenuation to the frequencies in pass band remains 

zero ideally, but attenuation to the frequencies in 

entire attenuation band considerably increases. e.g. If 

two sections of same type are cascaded, the 

attenuation in the attenuation band gets doubled 

giving much sharper cut-off characteristics than that 

obtained by using only a single section. 

But due to the resistance in the components used in 

cascade connection, the attenuation in pass band 

slightly increases, instead of being zero. Thus the curve 

becomes rounded off at the cut off frequency in pass 

band as shown in the Fig. 18. 



To fulfill all the requirements discussed above, it is necessary to design a new section having same 

cut-off frequency as that of the prototype section but different attenuation characteristics in the 

attenuation band. Also to maintain same cut-off frequency, both the sections must have same 

characteristic impedance Z0. It is possible to derive a new section from a prototype constant K 

section. Thus, a new section derived is called m-derived section. 

Fig 18 Attenuation constant with 

frequency 



Derivation of m-derived Sections: 

Consider any general T section and a new section derived from it as shown in 

the Fig. 19 (a) and (b). 
 

In the m-derived section, the series arm is of same type as that in prototype section 

but having different value i.e. m Z1/2 where m is a constant. Now Z2 of prototype 

section will change to Z′2 in m-derived section such that the value of Z0 for both the 

sections is same. 

For a prototype section, the characteristic impedance is given by, 

Fig 19 



Similarly for a m-derived section, the characteristic impedance is given by, 

 

To maintain same Z0, equating equations (1) and (2) by squaring, 

 



From equation (3) it is dear that, the shunt arm of m-derived section is a series connection of two impedances (Z2/m) and (1-m2/4m) Z1 if 0<m<1 as shown in the Fig. 20. 

 

The same technique can be used to obtain m-derived π section. Consider any general π section with shunt arm of same type 

but having different value i.e.  Z2/m as shown in the Fig. 21. 

 

For a prototype π section, the characteristic impedance Z0π is given by, 

 

Fig 20  m-Derived 

T section 

Fig 21 



Similarly for a m-derived π section, the characteristic impedance is given by, 

 

Squaring equations (4) and (5) and equating, 

 



Multiplying numerator and denominator by the factor m/1-m2 we get 

 

From equation (6) it is clear that, the series arm Z′1 of m-derived section is a parallel combination of two 

 impedances (m Z1) and (4m/1-m2) Z2 with condition 0< m< 1. The m-derived π section is as shown in the Fig. 22. 

 

Fig 22 m-Derived 𝜋  
section 



In m-derived filters (either T or π), attenuation characteristic can be improved in 

stop band by using series resonant circuit formed in the shunt arm of m-derived T 

section and anti resonant circuit formed in the series arm of m-derived π section. 

We can select a frequency of resonance of these resonant circuits such that 

attenuation increases very rapidly at that frequency up to ∞. Consider m-derived 

low pass filter. Here if frequency of resonance is selected just above the cut-off 

frequency of the low pass filter, fc, the shunt arm in T section acts as a short circuit 

at this frequency being series resonant circuit. It short circuits the transmission 

path. Hence output becomes zero and attenuation increases to ∞. In π section, at 

frequency which is just above fc, series arm becomes open circuit being anti 

resonant circuit. Hence output becomes zero and attenuation increases to ∞.  

Consider the m-derived T and π sections as shown in the Fig. 22 and Fig. 24. If we 

put m=1, both sections reduce to corresponding prototype sections. As m is a 

constant, for different values of m, we can design infinite m-derived sections for 

same fc and z0 specifications. The shunt arm of T section is a series combination of 

impedances in terms of Z1 and Z2 ; while series arm of π section is a parallel 

combination of impedances in terms of Z1 and Z2. But we know that Z1 and 

Z2 must be of different types. So to maintain this relationship in the shunt arm of T 

section and the series arm of π section, factor 1-m2/4m must be positive which 

gives m always positive. As we have seen earlier, for m=1, we get original 

prototype filter sections. Thus the value of m must be always selected as 

 

https://www.eeeguide.com/wp-content/uploads/2019/11/m-Derived-Filters-12.jpg


m Derived Low Pass Filter: 

The m Derived Low Pass Filter T and π sections are 

as shown in the Fig. 23 (a) and (b) respectively. 

 

Fig 23 m-Derived Low Pass Filter 



Consider that the shunt arm of T section resonates at the frequency of infinite attenuation i.e. f∞, which is selected just above 

 cut-off frequency fc. The frequency of resonance is given by, 

 

But for low pass filter, cut-off frequency is given by, 

 

Substituting above value in equation for f∞, 

 



Simplifying equation (1), 
 

Thus, equation (2) clearly indicates that if the cut-off 

frequency and frequency of infinite attenuation are specified 

the value of m can be easily evaluated. 

Variations of Characteristic Impedance (Z0) , Attenuation  



Variations of Characteristic Impedance (Z0) , Attenuation Constant (α) and Phase Constant (β) with Frequency: 
The variations of characteristic impedance (Z0), attenuation constant (α) and phase constant (β) with frequency are as shown in the Fig. 24 (a), (b) and (c) respectively. 

 

As the characteristic impedance Z0 for prototype filter and m-derived section is same, the variation of Z0 in m Derived Low 

Pass Filter section is similar to that in prototype filter section. The variation of attenuation constant over the attenuation band 

depends on types of the reactances. The attenuation constant a in attenuation band is given by, 

Fig 24 

 



The phase shift β in pass band is given by, 
 

As studied earlier, in stop band phase shift is always πc. But in m 

Derived Low Pass Filter, above f∞, the phase shift drops to 0 value as 

shunt arm becomes inductive above resonant frequency 



m - Derived High Pass Filter: 
The m Derived High Pass Filter T and π sections are as shown in the Fig. 25 (a) and (b). 
 

Fig 25 m-Derived high pass 

filter 



Consider that the shunt arm of the T section resonates at a frequency of infinite attenuation i.e. f∞ which is selected just below cut-

off frequency fc. The frequency of resonance is given by, 

 

But for high pass filter, cut-off frequency is given by 

 

Substituting value of fc in the equation for f∞, 

 

Simplifying equation (1) further, 

 



Variations of Characteristic Impedance (Z0), Attenuation Constant (α) and Phase Shift (β) with Frequency: 

The variations of characteristic impedance (Z0), attenuation constant (α) and phase shift (β) with frequency are as shown in the fig . 

Respectively  

 

Fig 26  



As the characteristic impedance for both the sections i.e. prototype section and 

 m Derived High Pass Filter section, the variation of Z0 in m-derived section is similar to that in  

the prototype filter section. The attenuation constant α in the attenuation band is given by, 
 

The phase shift β in the pass band is given by 

 



Composite Filters in Network Analysis: 

Composite Filters in Network Analysis – In prototype filter sections, the attenuation 

characteristic is not very sharp in the attenuation band as it is expected. This drawback can be 

overcome by using m-derived filter sections which are derived from respective prototype filter 

sections. But it is observed that in the stop band attenuation drastically reduces after f∞ in low 

pass section and before f∞ in high pass section. This drawback of m-derived filter can be 

overcome by connecting number of sections including prototype sections and m-derived 

sections with terminating half sections. Such a combination of different sections is 

called composite filter. 

The comparison of attenuation constant variations in low pass prototype section, m-derived 

section and composite section is as shown in the Fig. 27 

 

Fig. 27 Variation of attenuation constant in prototype, m-

derived, and composite section 



In Composite Filters in Network Analysis, cut off frequency and the design 

impedance are the two important design specifications. The number of various 

sections in the composite filter totally depends on the attenuation characteristics 

required. If it is required that the attenuation should rise sharply in the attenuation 

band, we must select at least one m-derived section with low value of m. 

In general, for lower values of m, attenuation at cut off rises rapidly. The typical 

value of m for such attenuation at cut off is m= 0.3 to 0.35. If it is required to 

maintain this attenuation at a high value in attenuation band, we must connect 

either a prototype section or another m-derived section with comparatively larger 

value of m. 

If required both the sections can be used in the composite filter. To have proper 

impedance matching and constant characteristic impedance throughout pass band, 

we must connect the terminating sections with m = 0.6. 

 

The general block schematic of the composite filter is as shown in the Fig. 9.45. 

Fig. 28 Composite 

filter 



Active Filters : 
Active Filters – An electric filter is often a frequency selective circuit that passes 

a specified band of frequencies and blocks or attenuates signals of frequencies 

outside this band. Filters may be classified in a number of ways as follows. 

1. Analog or digital filters 

2. Passive or active filters 

3. Audio (AF) or radio (RF) filters 

Analog filters are designed to process analog signals using analog techniques, 

while digital filters process analog signals using digital techniques. Depending 

on the type of elements used in their construction, filters may be classified as 

active or passive. 

The elements used in passive filters are R, C and L. Active filters, on the other 

hand, employ transistors or op-amps in addition to resistors and capacitors. The 

type of element used dictates the operating frequency range of the filter. 

For example, RC filters are commonly used for audio or low frequency 

operation, whereas LC filters or crystal filters are employed at RF or high 

frequency. Because of their high Q value (figure of merit), the crystals provide 

stable operation at high frequency. Inductors are not used in the audio range 

because they are large, costly and may dissipate a lot of power. An Active Filters 

Classification offers the following advantages over a passive filter. 

 



1.Gain and frequency adjustment flexibility 

Since the op-amp is capable of providing a gain, the input signal is not attenuated, as in a passive 

filter. Also, an active filter is easier to tune. 

2.No loading problem 

Because of the high input resistance and low output resistance of the op-amp, the active filter does 

not cause loading of the source or load. 

3.Cost 

Active filters are typically more economical than passive filters. This is because of the variety of 

cheaper op-amps available, and the absence of inductors. 

Although active filters are most extensively used in the field of communications and signal 

processing, they are employed in one form or another in almost all sophisticated electronic systems, 

radio, TV, telephones, radar, space satellites and biomedical equipment. 

The most commonly used Active Filters Classification are as follows. 

1. Low pass 

2. High pass 

3. Band pass 

4. Band stop 

5. All pass 

Each of these filters uses an opamp as the active element and R, C as the passive element. 



Crystal filters are widely used in many applications including radio receivers as well as many 

other radio communications applications. The very high level of Q makes the quartz crystal 

resonators they use makes them ideal for use as the primary band pass RF filter in high 

performance radio communications receivers. As a result of this there are a number of circuits 

that have been used to provide the required level of selectivity and performance over the years. 

These include the single crystal filter, the half lattice crystal filter and the ladder filter. 

Single crystal filter 

The simplest crystal filter employs a single crystal. This type of RF filter was developed in the 

1930s and was used in early receivers dating from before the 1960s but is rarely used today. 

Although it employs the very high Q of the crystal, its response is asymmetric and it is too 

narrow for most applications, having a bandwidth of a hundred Hz or less. 

In the circuit there is a variable capacitor that is used to compensate for the parasitic 

capacitance in the crystal. This capacitor was normally included as a front panel control. 

 

Diagram of filter using a single quartz crystal 



Half Lattice crystal filter 
This form of band pass RF filter provided a significant improvement in performance over the 

single. In this configuration the parasitic capacitances of each of the crystals cancel each other 

out and enable the circuit to operate satisfactorily. By adopting a slightly different frequency for 

the crystals, a wider bandwidth is obtained. However the slope response outside the required 

pass band falls away quickly, enabling high levels of out of band rejection to be obtained. 

Typically the parallel resonant frequency of one crystal is designed to be equal to the series 

resonant frequency of the other. 

Despite the fact that the half lattice crystal filter can offer a much flatter in-band response there 

is still some ripple. This results from the fact that the two crystals have different resonant 

frequencies. The response has a small peak at either side of the centre frequency and a small 

dip in the middle. As a rough rule of thumb it is found that the 3 dB bandwidth of the RF filter is 

about 1.5 times the frequency difference between the two resonant frequencies. It is also found 

that for optimum performance the matching of the filter is very important. To achieve this, 

matching resistors are often placed on the input and output. If the filter is not properly matched 

then it is found that there will be more in-band ripple and the ultimate rejection may not be as 

good. 



 

 

Diagram of half lattice crystal filter 

A two pole filter (i.e. one with two crystals) is not normally adequate to meet many 

requirements. The shape factor can be greatly improved by adding further sections. 

Typically ultimate rejections of 70 dB and more are required in a receiver. As a rough 

guide a two pole filter will generally give a rejection of around 20 dB; a four pole 

filter, 50 dB; a six pole filter, 70 dB; and an eight pole one 90 dB. 



Crystal ladder filter 
For many years the half lattice filter was possibly the most popular format used for crystal 

filters. More recently the ladder topology has gained considerable acceptance. In this form 

of crystal pass band filter all the resonators have the same frequency, and the inter-

resonator coupling is provided by the capacitors placed between the resonators with the 

other termination connected to earth. 

 

Four pole ladder crystal filter 



Quartz crystal filter design parameters 
When a quartz crystal filter is designed factors such as the input and output 

impedance as well as bandwidth, crystal Q and many other factors need to 

be taken into account. 

Some of the chief factors are obviously the bandwidth, shape fact, and 

ultimate cutoff. Although it is very much a simplification, these factors are 

dependent upon the number of poles (equivalent to the number of crystals), 

their Q value, and their individual frequencies. 

Crystal filters are widely used in many radio communications receiver 

applications. Here these filters are able to provide very high levels of 

performance and at a cost which is very reasonable for the performance that 

is given. These RF filters may be made in a variety of formats according to 

the applications and the performance needed. While these RF filters can be 

made from discrete components, ready manufactured crystal filters are 

normally bought, either off the shelf, of made to a given specification. 
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